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Abstract
Measurements of dissolved, ascorbate-reducible and total Mn by ICP-OES revealed significantly higher
concentrations during estuarine turbidity maxima (ETM) events, compared with non-events in the
Columbia River. Most probable number (MPN) counts of Mn-oxidizing or Mn-reducing heterotrophs
were not statistically different from that of other heterotrophs (103-104 cells ml-1) when grown in
defined media, but counts of Mn oxidizers were significantly lower in nutrient-rich medium (13 cells
ml-1). MPN counts of Mn oxidizers were also significantly lower on Mn(III)-pyrophosphate and glycerol
(21 cells ml-1). Large numbers of Rhodobacter spp. were cultured from dilutions of 10-2 to 10-5, and
many of these were capable of Mn(III) oxidation. Up to c. 30% of the colonies tested LBB positive, and
all 77 of the success-fully sequenced LBB positive colonies (of varying morphology) yielded sequences
related to Rhodo-bacter spp. qPCR indicated that a cluster of Rhodo bacter isolates and closely related
strains (95-99%identity) represented approximately 1-3% of the total Bacteria, consistent with clone
library results. Copy numbers of SSU rRNA genes for either Rhodobacter spp. or Bacteria were four to
eightfold greater during ETM events compared with non-events. Strains of a Shewanella sp. were
retrieved from the highest dilutions (10-5) of Mn reducers, and were also capable of Mn oxidation. The
SSU rRNA gene sequences from these strains shared a high identity score (98%) with sequences obtained
in clone libraries. Our results support previous findings that ETMs are zones with high microbial
activity. Results indicated that Shewanella and Rhodobacter species were present in environmentally
relevant concentrations, and further demonstrated that a large proportion of culturable bacteria,
including Shewanella and Rhodobacter spp., were capable of Mn cycling in vitro.
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Introduction

Estuaries are highly productive, dynamic environments
that feature steep salinity, temperature, chemical and tur-
bidity gradients, and contribute vital trace minerals and
organic matter to food webs in coastal environments. The
Columbia River estuary, in particular, is the largest source
of freshwater, by volume (60-90%), to the California
Current System between the San Francisco Bay and the
Strait of Juan de Fuca (Barnes et al., 1972), and it also
provides a major source of dissolved manganese and
nutrients to the coastal waters (Aguilar-Islas and Bruland,
2006; Bruland et al., 2008). Water circulation and density
stratification, controlled by river discharges, tides and
shelf winds, enable entrapment of suspended particulate
matter in estuarine turbidity maxima (ETM) in the north,
south and central channels of the Columbia River estuary
(Gelfenbaum, 1983; Jay and Smith, 1990; Jay and
Musiak, 1994; Small and Prahl, 2004). ETM are gener-
ated because the net flux of deep water upstream into the
estuary allows negatively buoyant particulate matter to
remain trapped in the estuary in dense clouds of turbidity
(Crump et al., 1998). It is in these ETM where much of the
enzymatic activity and biogeochemical cycling is thought
to occur, for example rapid cycling of trace metals and
organic matter by bacteria (Crump and Baross, 1996;
Prahl et al., 1998). Suspended particulate matter supports
the bulk of microbial decomposition and thus contributes
available organic matter to the thriving ecosystem. Crump
and colleagues have determined that particle attached
bacteria are 10-100 times more active than free living
bacteria (Crump and Baross, 1996; Crump et al., 1998;
1999). In addition, Klinkhammer and McManus have pro-
posed that the ETM contain an active community of Mn
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reducers (Klinkhammer and McManus, 2001). They sug-
gested that a release of organic matter may be catalysed
in part by Mn-reducing bacteria in anoxic pockets of sus-
pended particles. We hypothesized that such a release of
dissolved Mn in oxic waters should allow for Mn oxidation.
Due to emerging evidence indicating the importance of
Mn(lll) in the environment (Trouwborst et al., 2006), we
further hypothesized that Mn(lll)-oxidizing bacteria should
also be present.

Members of the Shewanellaceae are well known for
dissimilatory metal reduction (Nealson and Saffarini,
1994; Gralnick et al., 2006), and are often found in redox
interfaces where Mn cycling is important, such as those
occurring in the Black Sea, Amazon River, Halifax Harbor,
Oneida Lake, and in deep-sea sediments (Nealson and
Scott, 2006; Hau and Gralnick, 2007). Both Mn reduction
(Nealson and Scott, 2006) and Mn oxidation (Staudigel
et al., 2006; this work; C.R. Anderson, R.E. Davis, N.S.
Bandolin, A.M. Baptista and B.M. Tebo, in preparation)
have been detected among Shewanella species.
However, Mn(ll) oxidation by Shewanella has received
little attention, and it may or may not be an environmentally
relevant process. DiChristina and DelLong mention
involvement in ferromanganese deposits as a possibility
for Shewanella putrefaciens, based on circumstantial evi-
dence (DiChristina and DelLong, 1993), and Shewanella
oneidensis MR-1 has been shown to have a chemotactic
response towards Mn(ll) (Bencharit and Ward, 2005).
Further, it has been hypothesized that bacteria may
oxidize Mn in order to store the oxides for use as alterna-
tive electron acceptors when suboxic or anoxic conditions
arise (Tebo, 1983; de Vrind et al., 1986; Brouwers et al.,
2000a). Shewanella may be one of a few genera (along
with Bacillus and Pseudomonas) that would be capable of
this, based on our current knowledge of microbial physi-
ology, i.e. the ability of some of these organisms to grow
with electron acceptors other than oxygen. Both of these
reactions, Mn oxidation and Mn reduction, play important
roles in carbon cycling in the environment (Nealson and
Myers, 1992; Sunda and Kieber, 1994; Klinkhammer and
McManus, 2001). Mn is also an important electron shuttle
or redox mediator, due to the fact that reduced Mn(ll) is
readily soluble and can diffuse into the upper oxic zone,
whereas oxidized Mn(lV) is a solid precipitate and can sink
back down into the sediment (Nealson and Myers, 1992;
Nealson and Saffarini, 1994).

Manganese(ll)-oxidizing bacteria can accelerate the
rate of Mn oxidation by several orders of magnitude over
abiotic oxidation, and the Mn oxides produced are bio-
geochemically active (Tebo ef al., 2005). Mn oxides are
highly reactive and can oxidize humics or other organics
(Sunda and Kieber, 1994), scavenge reactive oxygen
species or heavy metals, and serve as electron acceptors
in anaerobic respiration (Tebo et al., 2004). Mn(ll) oxidiz-

ers are phylogenetically diverse and representatives from
the alpha (Anderson et al., 2009a), beta (Emerson and
Ghiorse, 1992) and gamma (Kepkay and Nealson, 1987)
classes of the Proteobacteria, as well as from the Gram-
positives (van Waasbergen et al., 1996) have been known
for some time. Prior to this study, members of the Roseo-
bacter clade among the Alphaproteobacteria, but not
species of Rhodobacter were known to oxidize Mn(ll). For
example, culture-based studies in the deep-sea identified
several new species from among the Roseobacter clade
that are capable of oxidizing Mn(ll), including strains
SPB1, SPB6 and LOBS8 (Templeton et al., 2005). Further,
studies in Elkhorn Slough near Monterey Bay, California
noted several related strains including UAzPsJAC-6,
UAzPsK-5, AzwK-3b and UAzPsJAC-1b (Hansel and
Francis, 2006).

Members of the species Rhodobacterform a monophyl-
etic clade within the larger Rhodobacteraceae family of
which Roseobacter spp. are also members. Roseobacter-
aceae are among the most easily cultivated and are known
to be important in dimethylsulfoniopropionate degradation,
carbon monoxide oxidation, aerobic anoxygenic photo-
synthesis, Fe(ll) oxidation, and production of bioactive
compounds and quorum sensing molecules (Giovannoni
and Rappé, 2000; Buchan et al., 2005; Wagner-Débler
and Biebl, 2006; Poulain and Newman, 2009). They
occupy a diversity of ecological niches including ocean
surface layers, coastal regions, submarine basalts, sea ice
and estuaries, but become less abundant or absent in
freshwater and terrestrial habitats (Buchan et al., 2005,
and references therein). Based on molecular techniques,
members of the Roseobacter lineage often dominate or at
least represent a large abundance, from 10% to 40% of
the population, of the SSU rRNA profiles in offshore Medi-
terranean (Acinas et al., 1999), oceanic (Gonzalez et al.,
2000) and coastal waters (Cottrell and Kirchman, 2000;
Dang and Lovell, 2002; Suzuki et al., 2004).

Multicopper oxidases or haem-containing peroxidases
(Anderson et al., 2009b) have been implicated in Mn(ll)
oxidation among many bacterial genera (Brouwers et al.,
2000b) including Pedomicrobium (Ridge et al., 2007),
Leptothrix (Corstjens et al., 1997), Bacillus (van Waasber-
gen etal., 1996; Dick et al., 2008a) and Aurantimonas
(Dick et al., 2008b; Anderson et al., 2009b). A multicopper
oxidase, CumA, was originally thought to be involved in
Mn oxidation in Pseudomonas putida (Brouwers et al.,
1999), although perhaps another enzyme is secreted via
the two-component regulation system instead (Geszvain
and Tebo, 2010). Detecting multicopper oxidase and/or
haem peroxidase-type genes in new strains of Mn(ll) oxi-
dizers can lend credence to the involvement of these
enzyme classes in Mn(ll) oxidation, and help elucidate the
evolutionary phylogeny of these genes. In this study we
evaluated Mn-oxidizing Rhodobacter isolates for the pres-



ence of Mox-type genes. Overall, the goals of this study
were to determine which bacteria are responsible for
Mn(Il) and Mn(l1l) oxidation as well as Mn oxide reduction,
and to determine the relative abundance of microbial
groups implicated in Mn cycling in the Columbia River
estuary and ETM.

Results and discussion

Biogeochemical analyses of dissolved and
ascorbate-reducible Mn

Resources of the SATURN collaboratory (Baptista et al.,
2008) were used to anticipate ETM timing and locations in
the North and South Channel of the estuary (Fig. S1).
Prior to sampling, we utilized data-informed daily fore-
casts of baroclinic circulation (http://www.stccmop.org/
datamart/virtualcolumbiariver/forecasts), to predict salinity
intrusion length and variability in the North and South
channels of the estuary. Details of the models (Zhang
et al., 2004; Zhang and Baptista, 2008) and their simula-
tion skill (Baptista et al., 2005; Burla, 2009; Frolov et al.,
2009) are described elsewhere. The location of the salt
wedge was empirically correlated, via observations
of sediment concentrations (http://www.stccmop.org/
datamart/observation_network), to the timing of the
ETMs, which were expected to occur near the front of the
salt wedge (B. Crump and L. Herfort, pers. comm.).
Samples were collected in the South Channel on 14 June
2007, on 17 July 2007, and in both the North and South
Channels from 14 August through 31 August 2007.
Samples were deemed to be either ETM or non-ETM
samples by the chief scientist at the time of sampling and
in general were defined according to a significant change
(greater than 1.5- to 2-fold change) in nephelometric tur-
bidity units (NTU), or a change in the transmitted or
reflected light due to changes in suspended particulate
matter in conjunction with the time and location of the
predicted occurrence (see Figs S2 and S3 for example
ETM events). The maximum turbidity measurements
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observed roughly correlated with the salt wedge and
could be found at the front edge (low salinity values c.
PSU 5) or rear edge (intermediate salinity values c. PSU
15) of the salt wedge. Turbidity generally subsided 30 min
to 2 h after the salt wedge had passed (see Fig. S3A as
an example). The change in NTU above baseline during
an ETM event was also somewhat variable and ranged
from as little as ~1.5-fold (Fig. S2A), to as high as ~15-fold
(Fig. S3A). This is not too surprising since concentrations
of suspended particulate matter in the Columbia River
and other estuarine/river systems have been shown to
vary with season, river flow, and tidal cycle and amplitude,
and these conditions can affect manganese(ll) and par-
ticulate manganese concentrations as well (Jay and
Smith, 1990; Grabemann etal., 1997; Shiller, 1997;
Shiller and Stephens, 2005; Aguilar-Islas and Bruland,
2006).

The range in concentration of dissolved manganese (as
defined by passing through a 0.2 um filter) was as
expected, ¢. 1-100 nM (Fig. 1B), according to previous
measurements (Klinkhammer et al.,, 1997; Klinkhammer
and McManus, 2001; Aguilar-Islas and Bruland, 2006).
Further, as expected, all but one of the samples showed a
significant increase in dissolved manganese concentra-
tions during an ETM event relative to samples taken
approximately 2 h before or after the corresponding ETM
event. These results support research by Klinkhammer
and McManus (2001), who also found increases in dis-
solved Mn concentrations in correlation with turbidity
increases. Reductive dissolution of Mn (Aguilar-Islas and
Bruland, 2006) as well as high concentrations of organic
matter and detrital material have also been noted in sus-
pended particulate matter in the ETM (Prahl et al., 1997;
1998), providing further evidence that conditions should
allow microbial Mn reduction.

Measurements of ascorbate-reducible Mn were made
to determine if Mn oxides were present during ETM
events. All samples taken in June, July and August 2007
in the North and South channel showed a significant

Fig. 1. Measured values for (A) total
manganese and (B) dissolved manganese
during and c. 2 h before or after an ETM

event in the South Channel (SC) or North
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increase in total manganese concentrations (dissolved +
ascorbate-released Mn) during an ETM event, relative to
samples taken approximately 2 h either before or after the
corresponding ETM event (Fig. 1A). These results indi-
cate that Mn oxides are present and concentrations are
enhanced during an ETM event relative to before or after
an event. In fact, total Mn (including dissolved and
ascorbate-released) had a more significant relationship
with turbidity compared with dissolved Mn alone
(Fig. S3B). Dissolved Mn showed very little relationship
with turbidity when graphed across all ETM events
sampled, as demonstrated by a relatively small slope
(0.28) and low R value. This is, at least in part, due to the
wide variation in NTU values measured during an ETM
event (from 4 to 80). Such variation in NTU values could
be due to seasonal differences, or possibly differences in
sampling depth or location relative to the centre of the
ETM (e.g. sampling on the fringes of the ETM where Mn
may be enhanced more than particulate matter). Both
dissolved Mn and ascorbate-released Mn (particulate Mn
oxides) showed a strong correlation with turbidity for a
single ETM event and associated non-ETM samplings.
Few studies of Mn oxides in the Columbia River have
been conducted previously. However, at least one study
found that particulate matter in the Columbia River was
enriched in manganese oxides, and that particulate Mn is
slow settling and may be suspended higher in the water
column and for longer than fast-settling particles rich in
detrital material (Covert, 2001). This may explain why high
values for total and ascorbate-released Mn were obtained
despite low NTU values during the August 2007 sam-
plings (Fig. S2). We can infer from these biogeochemical
analyses that microbially mediated Mn oxidation is occur-
ring. These results support other studies that have impli-
cated microbial processes in producing high rates of
Mn(Il) oxidation in other rivers and estuaries, including the
lower Mississippi River (Shiller and Stephens, 2005), the
Chesapeake Bay (Moffett, 1994) and the Newport River
estuary (Sunda and Huntsman, 1987).

Culture-dependent studies

Culturing of Mn oxidizers from serial dilutions of river
water in MnA1 media resulted in high numbers of Rhodo-
bacter spp. isolates from multiple dilutions (102 to 1075).
Seventy-six of the 77 isolates, whose SSU rRNA gene
fragments were successfully sequenced, belonged to a
clade of Rhodobacter somewhat related to Pseudorhodo-
bacter ferrugineus (95% identity across ~1400 bp; iso-
lates CR07-8, -44, -62 and -97 in Fig. 2), and the other
isolate (CR0O7-5 in Fig. 2) was related (96% identity) to
Rhodobacter vinaykumaraii. We noted that a large per-
centage (up to c. 30%) of colonies on low-nutrient agar
tested positive for Mn oxides using the leucoberbelin blue

(LBB) colorimetric test (Tebo et al., 2006); however, none
of the colonies tested on rich media, such as K medium,
tested LBB positive (data not shown). Similarly, most
probable number (MPN) results across a variety of differ-
ent carbon sources in low-nutrient agar gave similar
numbers for all culturable heterotrophic bacteria
(2.4 x 10°to 1.1 x 10*) and culturable heterotrophic Mn(Il)
oxidizers (3.6 x 102 to 3.8 x 10%, Fig. 3). MPN counts of
Mn oxidizers in Mn(lll)-pyrophosphate glycerol media
were significantly lower (21 cells ml-!, Fig. 3), suggesting
that some, but not all culturable bacteria can produce
oxides from the Mn(lll) intermediate. At least 15% of the
Rhodobacter isolates were capable of producing Mn
oxides on Mn(lll)-pyrophosphate glycerol plates, although
not all isolates were tested (data not shown). MPN counts
of Mn oxidizers were dramatically reduced (down to 13
cells mI™") in 50% natural seawater K medium, suggesting
that the culturable Mn-oxidizing community in the Colum-
bia River either was outcompeted on rich media, or
showed a preference for or adaptation to more olig-
otrophic conditions (Fig. 3). It is less likely that cells were
unable to oxidize Mn in K medium, since all of the
Mn-oxidizing isolates tested were capable of oxidation in
this medium (data not shown). Total numbers of het-
erotrophic bacteria did not change significantly on either
type of medium (Fig. 3).

Quantification of Mn reducers (Fig. 4B) was estimated
at 2.7 x10* cells ml! in the June ETM and 2.8 x 10*
cells ml=" in the July ETM using MPN cell counts. Further,
multiple isolates of a Shewanella sp. (asterisks, Figs 5
and S4) were cultured from the highest dilution of 10~ and
likely represent an important group in the Columbia River.
Corroborating these data are molecular phylogenetic
analyses of the Columbia River water samples, where
sequences clustering with the isolated Shewanella strains
were detected in 1/100 and 1/190 clones in libraries from
samples collected in April 2007 and August 2007 respec-
tively (daggers, Figs 5 and S4). Both culturing (Nealson
etal, 1991; DelLong etal., 1997; Ziemke et al., 1997;
Brettar et al., 2001; Ivanova et al., 2003) and molecular
techniques (DiChristina and DelLong, 1993; Brown and
Bowman, 2001; Bowman and McCuaig, 2003) have dem-
onstrated presence and/or abundance of Shewanella
species in various environments. However, there is often
a discrepancy between strains that are retrieved by cul-
turing and those that are retrieved by molecular tech-
niques (Suzuki et al., 1997), sometimes termed the great
plate count anomaly (Amann et al., 1995). Here we have
managed to culture strains with high identity (98% by SSU
rRNA sequence) to sequences retrieved from clone librar-
ies. The sequences from the cultured strains (A1 and Gly)
also cluster most closely with uncultured clones from the
Columbia River, than with other top blast hits, either cul-
tured or uncultured (Figs 5 and S4). These results indicate
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Fig. 2. Neighbour-joining tree inferring the phylogenetic relationship between cultured strains* (asterisks) and those found in clone
librariest (daggers) in the Columbia River in this study. Alignments were created using the on-line SILVA aligner and then exported from ARB.
Dendrogram was created using PHYLIP. The percentage of the sequences from each library that represented a particular OTU is given in
parentheses: actual sequence abundance ranged from 1/150 to 2/80. Bootstrapping values are shown for nodes that were supported > 50% of
the time. Nodes with bootstrapping values > 60 were also supported with maximum-likelihood analysis (data not shown). Sulfitobacter species
were used as the outgroup. The cluster of Rhodobacter spp. targeted by the qPCR primers is marked by a bar.

that at least one of the more abundant Shewanella phy-
lotypes in this environment is readily culturable. The use
of a lower-nutrient medium and cultivation from high dilu-
tions may have also contributed to our success in cultur-
ing an environmentally relevant strain.

While these Shewanella sp. were isolated for their capa-
bility to reduce Mn(IV) oxides, they are also capable of
oxidizing Mn(ll) slowly on MnA1 medium supplemented
with casamino acids, or more rapidly when succinate
is used (empirical observation, rates not measured).
Shewanella species have been isolated from estuarine
waters previously (Das and Caccavo, 2000; Skerratt et al.,
2002; Kan et al., 2006). The more recent discoveries of
Mn(ll) oxidation by Shewanella strains VS-7 and VS-58 58
isolated from Vailulu’'u Seamount (Staudigel et al., 2006)
and by other environmental Shewanella strains (C.R.
Anderson, R.E. Davis, N.S. Bandolin, A.M. Baptista and

B.M. Tebo, in preparation) could have important implica-
tions for electron shuttling and carbon cycling in diverse
environments such as Vailulu’'u Seamount and the Colum-
bia River. Taken together, the culture-dependent MPN data
presented here suggest that a large percentage of the
culturable population is capable of Mn cycling, either oxi-
dation or reduction, and that Rhodobacter spp. and
Shewanella sp. are among the most abundant.

Culture-independent studies

Quantitative real-time PCR (qPCR) of total bacterial SSU
rRNA genes in June and July, respectively, were estimated
to represent 3.09 x 10° and 6.36 x 10° cells ml~" during an
ETM and 6.22 x 10° and 1.56 x 10° cells ml™" during a
non-ETM event (Fig. 4A). Quantification of SSU rRNA
genes of a select clade of Rhodobacter spp., including the
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Fig. 3. Most probable number (MPN) counts for detectable
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most abundant isolates, yielded in June and July, respec-
tively, 5.63x 10* and 7.43 x 10* during an ETM and
6.77 x10° and 1.01 x10* during a non-ETM event
(Fig. 4A). Numbers of either Bacteria or Rhodobacter spp.
were four- to eightfold greater during an ETM event sup-
porting studies that found higher numbers of particle-
attached bacteria and increased microbial activity during
ETM events (Crump and Baross, 1996; 2000; Crump et al.,
1998; 1999). The data presented here also demonstrated
that Rhodobacter spp. relative to total Bacteria repre-
sented approximately 1% of the population for samples
taken either during or before or after an ETM event. Inter-
estingly, these data corroborate data from clone libraries
which found that approximately 1-2% of the clones were
Rhodobacter spp. related to Rhodobacter capsulatus and
R. sphaeroides (Fig. 2, daggers). It was also interesting
that numbers of Rhodobacter spp. (including culturable
species) as determined by gqPCR very closely approxi-
mated those found for Mn oxidizers in MPN analyses
(Fig. 4). Additionally, culturable bacteria as determined by
MPNs (3.8 x 10° to 3.8 x 10*) represented roughly 1% or
less of the total bacterial population as determined by
gPCR (roughly 10%). This falls well within the range of
culturable bacteria given in the literature from 0.01% to
0.1% (Kogure et al., 1979), up to at least 60% (Button
etal.,, 1993). Numbers were comparable to that in a
similar study (C.R. Anderson, R.E. Davis, N.S. Bandolin,

B [] Heterotrophs
B Mn oxidizers
EJ Mn reducers

Most Probable Number (Cells mI'1)

July ETM

Fig. 4. A. Real-time gPCR quantification of 16S rRNA gene copy number of total Bacteria and Rhodobacter spp. in Columbia River estuary
samples during both ETM and non-ETM events. The y-axis represents the 16S rRNA gene copy number normalized by three rRNA operon
copies as an estimate of cell number (see Experimental procedures and Fogel et al., 1999). Data represent an average of triplicate samples

and bars represent standard error.

B. Most probable number (MPN) counts for heterotrophic bacteria, Mn-oxidizing bacteria (including Rhodobacter sp.) averaged across all
carbon substrates, and for Mn-reducing bacteria (including Shewanella sp.) for samples taken in July 2007. Data represent an average of
quadruplicate samples and bars represent the upper and lower 95% confidence intervals.
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Fig. 5. Neighbour-joining tree inferring the phylogenetic relationship between Mn(IV)-reducing and Mn(ll)-oxidizing Shewanella sp. cultured
strains* (asterisks) and those found in clone librariest (daggers) in the Columbia River in this study. Top blast hits to the isolates were
included, as well as a broad range of described species. Alignments were created using the on-line SILVA aligner and then exported from

ARB. Dendrogram was created using PHYLIP. Bootstrapping values ar
dendrogram was only weakly supported with maximume-likelihood ana
(Fig. S4). Escherichia species were used as the outgroup.

A.M. Baptista and B.M. Tebo, in preparation) of the Colum-
bia River plume off the coast of Oregon that found 103-10°
bacteria per ml of plume water. That same study also
detected Rhodobacter sp. in T-RFLP electropherograms,
but not in MPNs using nutrient-rich K medium, or on agar

e shown for nodes that were supported at least 50% of the time. The
lysis, and many branches had low bootstrapping values in both analyses

plates made with nutrient-rich K, M or Lept medium (C.R.
Anderson, R.E. Davis, N.S. Bandolin, A.M. Baptista and
B.M. Tebo, in preparation), again suggesting that these
strains prefer oligotrophic medium. Overall, this study
demonstrates high concentrations of Mn oxides and
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Mn-oxidizing bacteria. We suggest that at least some of the
Mn oxides present are a result of rapid Mn cycling in the
water column. Future studies should measure rates of Mn
oxidation inside and outside of the ETM.

Several studies have found Rhodobacter spp. in marine/
estuarine environments including the Columbia River
(Crump etal, 1999). Studies by Zhao and colleagues
(2009) and Kan and colleagues (2007) found that both
Roseobacter and Rhodobacter (P. ferrugineus) popula-
tions are important in the Chesapeake bay with both
groups accounting for 18% of the population in a March
2003 clone library. Waidner and Kirchman examined the
presence (Waidner and Kirchman, 2005) and abundance
(Waidner and Kirchman, 2008) of photosynthesis genes
and found that pufM genes most closely related to the
Rhodobacter genus were abundant and ubiquitous in the
Delaware estuary, a system somewhat analogous to that of
the Columbia River estuary. Stevens and colleagues
(2005) evaluated 265 clones from 12 different studies of
microbial diversity in the Wadden Sea, Germany and found
at least two clones in the Rhodobacter clade of the Rhodo-
bacter group (AY 145556 and AY332128). A large percent-
age (c. 20%) of the clones they evaluated fell in the
Roseobacter clade. Not all of the aforementioned studies
were conducted in the estuarine tidal flats, some were con-
ducted in more saline/marine environments of the Wadden
Sea. Overall, our study supports a mounting body of litera-
ture suggesting that members of the Rhodobacter clade
are abundant and widespread in estuarine environments
(Waidner and Kirchman, 2008; Zhao et al., 2009), whereas
members of the Roseobacter clade are usually the more
dominant group in marine environments (Buchan et al.,
2005). Members of the Roseobacter clade have been
known to oxidize Mn(ll) and have been found in various
environments including the deep-sea (Templeton et al.,

Roseovarius nubinhibens ISM EAP74966.1 -

wor Sulfitobacter sp. NAS-14.1 ZP_00963605.1

il _[Sulﬁtobacter sp. EE-36 ZP_00956004.1 -

Agrobacterium tumefaciens str. C58 NP_356650.1

Fulvimarina pelagi HTCC2506 EAU40416.1 +

Aurantimonas manganoxydans S185-9A1 EAS49965.1 +

Sinorhizobium medicae WSM419 YP_001313743.1
Pedomicrobium sp. ACM 3067 CAJ19378.1 +

Pseudomonas mendocina ymp YP_001188143.1
Polaromonas naphthalenivorans CJ2 YP_981497 .1

Fig. 6. Neighbour-joining tree demonstrating
the phylogenetic relationship between putative
multicopper oxidase genes that are widely
dispersed among Alphaproteobacteria.
Alignments were created using CLUSTALX.
Dendrogram was created using PHYLIP.
Bootstrapping values are shown for nodes
that were supported > 70% of the time, or for
nodes supported by both neighbour-joining
and maximum-likelihood analyses. All nodes
with bootstrapping values > 70% were
supported in both analyses (data not shown).
Strains capable of Mn(ll) oxidation are
denoted with a plus (+), and those known to
be incapable are denoted with a minus (-).
The remaining strains have not been tested,
or the result is unknown. Pseudomonas
mendocina and Polaromonas
naphthalenivorans were used as the
outgroups.

2005) and coastal estuaries (Hansel and Francis, 2006). To
our knowledge, this is the first time that members of the
Rhodobacter clade (relating to the genus Rhodobacter)
have been implicated in manganese(ll) oxidation. We can
infer from in vitro analyses that Rhodobacter spp. and/or
Shewanella spp. may be involved in Mn cycling in situ, and
molecular data support this hypothesis by demonstrating
that both sequence types are abundant. Sequences
related to cultured Shewanella spp. were abundant in
clone libraries, and gPCR results indicate an abundance of
sequences related to cultured Rhodobacter spp. Unfortu-
nately there is no molecular marker available to determine
the diversity and/or quantity of manganese oxidizers in the
Columbia River. The gene for MofA has been used (Siering
and Ghiorse, 1997), and perhaps moxA may be used as a
proxy for Mn oxidizer diversity in future experiments.
Interestingly, all of the Rhodobacter sp. isolates that
were tested from the largest cluster contained the gene for
MoxA (Fig. 6), whereas Rhodobacter sp. CR07-5 did not.
MoxA is a multicopper oxidase that is thought to be in-
volved in Mn oxidation, either directly or indirectly. In fact
Rhodobacter sp. CR07-5 is a poor oxidizer, and oxidizes
Mn(ll) more sporadically and more weakly than the other
strains. While MoxA may not be solely responsible for Mn
oxidation (i.e. it may not be the Mn oxidase), it may be
involved in mediating Mn oxidation, or it may occur as part
of an Mn oxidase complex. Thus, it is interesting that the
strains with the strongest Mn oxidation appear to have the
gene. It is important to note, however, that some strains
containing moxA homologues, such as Sulfitobacter sp.
EE-36, have tested negative for manganese oxidation
(Dick, 2006). More work would be needed to determine the
role that moxA plays in Mn oxidation, and to determine the
diversity of moxA genes present in the Columbia River.
Anderson and colleagues (C.R. Anderson, R.E. Davis,



N.S. Bandolin, A.M. Baptista and B.M. Tebo, in prepara-
tion) have detected manganese oxidase enzymes in the
Columbia River, but have not examined the diversity of
those proteins.

Overall, our molecular, microbiological and chemical-
analytical results build on previous studies and suggest
that microbially produced particulate Mn oxides, and Mn
cycling bacteria are abundant in ETM waters and that Mn
cycling is intensified during ETM events. Further, we
speculate that Mn oxide particles and associated oxidiz-
ers may create anaerobic microenvironments in the ETM
that allow for Mn reducers and contribute to the degrada-
tion of particulate organic matter. This and other studies
(Gebhardt et al., 2005; Shiller and Stephens, 2005) indi-
cate that the rapid cycling of trace metals such as Fe and
Mn in the ETM plays an important role in biogeochemical
and organic matter cycling and in supporting the dynamic
estuarine food web.

Experimental procedures
Sample collection and storage

Water samples from the Columbia River estuary (Fig. S1)
were collected in duplicate or triplicate in sterile 50 ml Falcon
tubes onboard either the R/V Forerunner (in June and July
2007), the R/V Barnes (in August 2007) or the R/V Wecoma (in
August 2007 and all other samplings). For cruises on the R/Vs
Barnes and Forerunner, samples were retrieved using an air
pump, and were coordinated with a conductivity, temperature
and depth recorder (CTD). Samples for clone libraries were
collected in April 2007, August 2007 and June 2008 on the R/V
Wecoma. For these cruises, samples were retrieved using an
SBE Carousel sampler with twelve 101 Niskin sampling
bottles. Cast data were collected using a SeaBird brand CTD
equipped with a transmissometer, fluorometer, thermometer,
photosynthetically available radiation (PAR) light sensor, O,
probe and altimeter. Microbial cells for molecular assays were
concentrated onto triplicate or quadruplicate Sterivex filters
(Millipore, Billerica, MA) onboard the ship. The volume filtered
was recorded, and was approximately 600-900 ml per filter.
Filters were stored shipboard in a freezer containing dry ice
and were transferred to a —-80°C freezer in the laboratory until
further processing. Water for culturing and MPN assays was
stored at 4°C in sterile Falcon tubes until the samples were
transported to the laboratory (usually within 24-48 h). Sub-
samples of water for ICP analysis were either filtered or
unfiltered and acidified with 3% nitric acid.

Culturing and MPNs

Anew medium, called MnA1 medium, was designed and used
forisolation of Mn(ll) oxidizers from dilutions of Columbia River
water. Constituents were the same as J medium (Tebo et al.,
2006), but with 40% natural seawater, and the addition of
10 mg I yeast extract, a mix of MnA1 trace metals, modified
from Holden and colleagues (2001) to include the following
final concentrations (in uM): 8.5 disodium nitrilotriacetic acid,

1.5 KCI, 1.0 A|K(SO4)2 X 12H20, 0.4 COC|2 X 6H20, 0.4
CuS0, x 5H,0, 16.0 H;BO;, 0.2 H,WO,, 0.4 KBr, 0.6 KI, 0.25
LiCl, 6.0 MnSO,, 0.8 Na;MoO, x 2H,0, 0.6 Na,SeO; x 2H,0,
0.4 N|C|2 X 6H20, 0.3 VOSO4, 7.5 ZnCIQ and 10.0
FeCl; x 6H,0, as well as one of each of the following: 10 mM
glycerol, 10 mM succinate, 10 mM glycolate or 0.5g !
casamino acids. To test for oxidation of Mn(lll), Mn(lll)-
pyrophosphate was used instead of 100 uM MnCl,. Mn(lll)-
pyrophosphate was modified from Klewicki and Morgan
(1998) by adding each of the following in the order listed and
mixing thoroughly by inversion between ingredients: 2.0 ml of
100 mM Na pyrophosphate-HCI (pH 7.5), 4.0 ml of 1 M Hepes
pH 7.5, 320 pl of 0.1 M MnCl; and 400 ul of 20 mM Mn(VIl) as
potassium permanganate. After mixing, the solution was incu-
bated on a rotary shaker overnight and filter-sterilized prior to
use. For MPN analyses, 225 ml of MNA1 medium or K medium
made with 40% seawater (Tebo et al., 2006) were added to
each well in a 96-well culturing plate. Twenty-five microlitres of
inoculum was added along a dilution of 107" to 108, so that the
top half of the plate represented quadruplicates for analysis of
metabolic activity, and the bottom half of the plate represented
quadruplicate dilutions for detection of Mn oxides. Positive
controls were inoculated in duplicate in column 12 with Auran-
timonas manganoxydans strain SI85-9A1. The plates were
incubated for 4 weeks in the dark at room temperature, at
which time 50 ul of 0.04% leucoberbelin blue (LBB) (Tebo
et al., 2006) was added to the wells for detection of Mn oxides
in the top four rows, and 50 pl of 0.3% lodonitotetrazolium salt
(INT), a redox indicator, was added to the bottom four rows as
a proxy for cell growth/activity. The solutions were allowed to
react overnight and were scored as positive (strongly coloured
red for INT or blue for LBB) or negative (weak or colourless) by
visual observation. Controls were conducted at the beginning
of the experiment to test for background reaction with LBB. All
dilutions were negative for LBB, indicating that there were not
sufficient quantities of Mn oxide to react with LBB prior to
incubation. MPN estimates were made using a downloadable
MPN calculator (http://www.i2workout.com/mcuriale/mpn/
index.html). For Mn reducers, serial dilutions were conducted
in triplicate in shake tubes, or media with low-melt agarose
(Adrian et al., 2000). Shake tubes contained the following:
50% natural seawater and 20 mg ml~' low-melt agarose that
was heated in a microwave, dispensed in the glove box,
autoclaved, flushed with ultra high purity N, and supple-
mented with the following (final concentrations): 10 mM Hepes
pH 7.75, 5 mM KHCO3, 0.025 g I"! yeast extract, J medium
vitamin solution (Tebo et al., 2006), 1 mM synthetic Mn oxides
(Tebo et al., 2006), Balch trace metals (Balch et al., 1979) and
10 mM acetate. After inoculation, tubes were inverted, solidi-
fied briefly on ice and incubated at room temperature. The Mn
oxides were suspended evenly and Mn reduction resulted in
clearings in the agarose. Material from the highest dilutions
was further diluted into shake agar tubes and/or spread onto
solid MnA1 agar plates for isolation and phylogenetic identifi-
cation. Amplicons from colony PCR reactions were screened
prior to cloning and full-length sequencing.

Biogeochemical analyses of Mn

Unfiltered samples were reacted with ascorbic acid (10%)
overnight as a proxy for total Mn (dissolved plus ascorbate-
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reducible); available Mn oxide concentration was calculated
by subtracting the dissolved concentrations (as defined by
passing through a 0.2 um filter) from total Mn. All samples for
analysis (dissolved and total) were centrifuged, transferred to
new sterile 15 ml Falcon tubes, and Mn concentrations were
determined by inductively coupled plasma-optical emission
spectroscopy (ICPOES) on a Perkin—Elmer Optima 2000
instrument and were adjusted for changes in dilution due to
acid addition.

DNA extraction, cloning and sequencing

Filters containing microbial cells for DNA extraction were
cracked open using pliers to allow the inner cylinder contain-
ing the filter to be removed. The filter was cut loose from the
cylinder using a sterile scalpel and was gently folded and cut
into tiny pieces using sterile scissors. The filter pieces were
allowed to fall directly into bead beating tubes from the
FastDNA Spin Kit for Soil (MP Biomedical Sciences, Solon,
OH), and extraction was carried out according to the manu-
facturer’s instructions. DNA concentration was determined
using a Nanodrop ND-1000 spectrophotometer (Thermo
Fisher Scientific, Wilmington, DE). Pure cultures of
Shewanella sp. and Rhodobacter sp. were grown in liquid K
medium (Tebo et al., 2006), pelleted, and genomic DNA was
extracted using the UltraClean® Microbial DNA Isolation Kit
(MoBioLaboratories, Carlsbad, CA). The SSU rRNA gene
was then amplified (from either metagenomic DNA or DNA
from isolates) using the 27F and 1492R primers (Lane,
1990). PCR products from three to six PCR reactions were
pooled for metagenomic DNA, and amplicons were cloned
into TOPO TA pCR®2.1 vectors (Invitrogen, Carlsbad, CA).
Plasmid DNA from transformants was extracted using the
QlAprep Spin Miniprep kit (Qiagen, Valencia, CA), and
screened using the M13 forward (-20) primer. Ninety-six-well
plates of glycerol stocks were sent to Washington University
(Saint Louis, MO) for sequencing of clone libraries.
Sequences of clones clustering with Rhodobacter or
Shewanella were deposited into GenBank with Accession
No. HM003632-HM003639. For the isolates, one clone was
selected from each isolate and was fully sequenced with
primers M13 forward (-20), M13 reverse (-27), 357f (5'-
CCTACGGGAGGCAGCAG), 515r (5-TTACCGCGGC
KGCTGRCAC), 926f (5-AAACTYAAAKGAATWGRCGG)
and 1098r (5-GGGTYKCGCTCGTTGC). Sequences were
deposited in GenBank with Accession No. EU979473-
EU979479. Alignments were created using the on-line SILVA
aligner and then exported from release 94 (Pruesse et al.,
2007) of the SILVA database for ARB (Ludwig et al., 2004)
along with other sequences of interest. Phylogenetic trees
were constructed using neighbour-joining and maximum-
likelihood methods in the PHYLIP software package (Felsen-
stein, 2004). The percentage of sequences from each library
that represented a particular OTU is given in parentheses:
actual sequence abundance ranged from 1/150 to 2/80.

Real-time quantitative PCR

Primers specific for bacteria were examined for target diver-
sity using the Probe Match tool on the RDP webpage (Cole

et al., 2009), and for other traits using Primer Express® soft-
ware (Applied Biosystems™, Foster City, CA). The forward
primer 338f 5-TCCTACGGGAGGCAGCAGT (Nadkarni
etal, 2002) and the reverse primer 518r 5-ATTACCGC
GGCTGCTGG (Einen et al., 2008) were chosen as they gave
broad coverage and a good amplicon size. Primers specific
for Rhodobacter spp. were designed using ARB probe design
(Ludwig et al., 2004), the Silva release 94 database (Pruesse
etal., 2007), Primer Express® software (Applied Biosys-
tems™, Foster City, CA), the Probe Match tool on the RDP
webpage (Cole et al., 2009), and by taking into consideration
optimal primer characteristics (Nadkarni et al., 2002). Both
the forward primer 391f (5 TAGCCATGCCGCGTGATC) and
the reverse primer 536r (5’AACGCTAGCCCCCTCCG)
matched the largest clade of cultured Rhodobacter spp. and
had only three common non-target sequences in the data-
base. The primer set was challenged against non-target
sequences (with 2 basepair mismatches or more) from clone
libraries. At 62°C non-target clones were not amplified,
whereas Rhodobacter sp. clones were amplified. Amplifica-
tions were performed on triplicate samples at two dilutions
(0.1 ng " and 0.2 ng ul™") in Maxima™ SYBR Green qPCR
Master Mix (Fermentas, Glen Burnie, MD) containing 0.2 uM
of each primer and were carried out using an Applied Biosys-
tems™ 7300 Real-Time PCR System (Foster City, CA) with
the following amplification protocol: 2 min at 50°C, 10 min at
95°C, and 40 cycles of 15 s at 95°C with 1 min at either 60°C
for bacteria or 62°C for Rhodobacter spp. After amplification,
a dissociation protocol was added to verify dissociation pro-
files. Plasmid DNA containing the SSU rRNA gene from
Rhodobacter sp. CR07-74 was used in the range of 10°-10?
target copies per microlitre to generate calibration curves for
quantification as described previously (Fey etal., 2004).
Copy number results were expressed on a basis of amount of
DNA extracted per ml of water filtered. Because many bac-
teria contain more than one SSU rRNA gene copy in the
genome, it is common to divide the number of copies in the
sample, as determined by qPCR, by the average number of
copies per genome to obtain a more accurate estimate of
genome copy number, as a proxy for cell number (Fogel
etal, 1999). The Ribosomal RNA Operon Copy Number
Database (Kaplenbach et al., 2001) was used to estimate the
number of SSU rRNA genes copies for all bacteria (4.06), and
for Rhodobacterales (2.69), according to the database on 2
August 2010. Since dividing by these numbers would yield a
higher number of Rhodobacterales relative to total Bacteria,
copy numbers of both groups were normalized by an average
of three copies per genome as a more conservative estimate
of Rhodobacter species.

moxA-type genes

Primers for moxA-type multicopper oxidase genes were
designed using a CLUSTALX multiple sequence alignment of a
range of multicopper oxidase-containing Alphaproteobacte-
ria, and using the SciTools available at Integrated DNA tech-
nologies (http://www.idtdna.com). Forward primer MoxAr
5-AAC ATG CCG CCC ATY TCG A and reverse primer
MoxAf 5-AGA TGG CSA TGG GSA TGA TG were chosen
and both of these matched eight of the mox sequences in the
alignment. Reaction mixtures were carried out in 50 pl of
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reactions containing AmpliTag Gold® (Applied Biosystems™,
Foster City, CA) reaction buffer (1x) and DNA Polymerase
(1.5 U), 0.4 uM of each primer, 800 uM dNTPs, 0.2 mg ml™
Bovine Serum Albumin (BSA, New England Biolabs, Ipswich,
MA) and 20 ng of DNA. The programme consisted of 3 min at
95°C, 30 cycles of 95°C for 1 min, 52°C for 1.5 min and 72°C
for 3 min, followed by a final elongation step at 72°C for
10 min. The PCR products were screened on a 1% agarose
gel in TBE buffer. Genomic DNA from A. manganoxydans
strain SI185-9A1 was used as a control and all strains gave a
band around 650 bp except Rhodobacter sp. CR07-5. All
strains, including the control, had some smearing and gave
multiple bands even after optimization of MgCl and tempera-
ture. Therefore, bands were cut out and purified using a
QlAquick Gel Extraction Kit (Qiagen, Valencia, CA), prior to
sequencing. moxA sequences were generated using the
MoxAf and MoxAr primer set and were deposited in GenBank
(Accession No. GU256057—-GU256060). The sequences for
Rhodobacter sp. CR07-44 and Rhodobacter sp. CR07-62
were identical across 423 bp. However, the sequencing
reads for Rhodobacter sp. CR07-62 were incomplete, and
were thus omitted from the tree. Multicopper oxidase pre-
dicted amino acid sequences were aligned using CLUSTALX
(Thompson et al., 1997) and phylogenetic trees were con-
structed using neighbour-joining and maximum-likelihood
methods in the PHYLIP software package (Felsenstein, 2004).
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Supporting information

Additional supporting information may be found in the online
version of this article:

Fig. S1. Hindcast models of bottom salinity in the Columbia
River estuary during sampling. Models were downloaded and
modified from the Model Browser created by the Center
for Coastal Margin and Prediction Program (http:/
www.stccmop.org/), a multi-institutional National Science
Foundation Science and Technology Center.

A and B. June samples taken (A) during an ETM with turbidity
at 50 ntu and salinity at 19 psu, and (B) after an ETM with
turbidity at 8 ntu and salinity at 25 psu.


http://www.stccmop.org/
http://www.stccmop.org/

C and D. July samples taken (C) during an ETM with turbidity
at 70 ntu and salinity at 5 psu, and (D) after an ETM with
turbidity at 6 ntu and salinity at 9 psu. For reference, Astoria
(represented by a polygon) and Youngs Bay are labelled in
the first panel.

Fig. S2. Changes in total, dissolved and ascorbate-released
manganese with depth (A) during and (B) before an ETM
event in the South Channel of the Columbia River in July
2007.

Fig. S3. Relationship between turbidity and manganese (A)
during and after an ETM event in the South Channel in July
2007, and (B) regression analysis of total manganese versus
turbidity and dissolved manganese(ll) versus turbidity for all
deep water samples (c. 1 m from the bottom, or 10-18 m
depth) collected in the South Channel on June, July or August
2007 cruises on the Columbia River.

Fig. S4. Maximum-likelihood tree inferring the phylogenetic
relationship between Mn(IV)-reducing and Mn(lIl)-oxidizing

Shewanella sp. cultured strains* (asterisks) and those
found in clone librariest (daggers) in the Columbia River in
this study. Top blast hits to the isolates were included, as well
as a broad range of described species. Alignments were
created using the on-line SILVA aligner and then exported
from ARB. Dendrogram was created using PHYLIP. Bootstrap-
ping values are shown for nodes that were supported at least
50% of the time. The number of the sequences from each
library that represented a particular sequence/OTU is given in
parentheses. The dendrogram was only weakly supported
with neighbour-joining analysis, and many branches had low
bootstrapping values in both analyses (Fig. 5). Escherichia
species were used as the outgroup.
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